Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.113
Filtrar
1.
Anticancer Res ; 44(3): 981-991, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423659

RESUMO

BACKGROUND/AIM: Methionine metabolism contributes to supplying sulfur-containing amino acids, controlling the methyl group transfer reaction, and producing polyamines in cancer cells. Polyamines play important roles in various cellular functions. Methylthioadenosine phosphorylase (MTAP), the key enzyme of the methionine salvage pathway, is reported to be deficient in 15-62% of cases of hematological malignancies. MTAP-deficient cancer cells accumulate polyamines, resulting in enhanced cell proliferation. The aim of this study was to investigate the combined effects of the polyamine synthesis inhibitor SAM486A and the anticancer antimetabolite cytarabine in MTAP-deficient leukemic cells in vitro. MATERIALS AND METHODS: The leukemia cell line U937 and the subline, U937/MTAP(-), in which MTAP was knocked down by shRNA, were used. The experiments were performed in media supplemented with 20% methionine (low methionine), which was the minimum concentration for maintaining cellular viability. RESULTS: The knockdown efficiency test confirmed a 70% suppression of the expression of the MTAP gene in U937/MTAP(-) cells. Even in the media with low methionine, the intracellular methionine concentration was not reduced in U937/MTAP(-) cells, suggesting that the minimum supply of methionine was sufficient to maintain intracellular levels of methionine. Both U937/MTAP(+) and U937/MTAP(-) cells were comparably sensitive to anticancer drugs (cytarabine, methotrexate, clofarabine and 6-thioguanine). The combination of SAM486A and cytarabine was demonstrated to have synergistic cytotoxicity in U937/MTAP(-) cells with regard to cell growth inhibition and apoptosis induction, but not in U937/MTAP(+) cells. Mechanistically, SAM486A altered the intracellular polyamine concentrations and reduced the antiapoptotic proteins. CONCLUSION: Methionine metabolism and polyamine synthesis can be attractive therapeutic targets in leukemia.


Assuntos
Amidinas , Antineoplásicos , Indanos , Leucemia , Humanos , Citarabina/farmacologia , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Poliaminas , Metionina/farmacologia , Metionina/metabolismo , Leucemia/tratamento farmacológico
2.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38271096

RESUMO

Hemorrhagic cystitis may be induced by infection, radiation therapy, or medications or may be idiopathic. Along with hemorrhagic features, symptoms include urinary urgency and frequency, dysuria (painful urination), and visceral pain. Cystitis-induced visceral pain is one of the most challenging types of pain to treat, and an effective treatment would address a major unmet medical need. We assessed the efficacy of a purine nucleoside phosphorylase inhibitor, 8-aminoguanine (8-AG), for the treatment of hemorrhagic/ulcerative cystitis. Lower urinary tract (LUT) function and structure were assessed in adult Sprague-Dawley rats, treated chronically with cyclophosphamide (CYP; sacrificed day 8) and randomized to daily oral treatment with 8-AG (begun 14 days prior to CYP induction) or its vehicle. CYP-treated rats exhibited multiple abnormalities, including increased urinary frequency and neural mechanosensitivity, reduced bladder levels of inosine, urothelial inflammation/damage, and activation of spinal cord microglia, which is associated with pain hypersensitivity. 8-AG treatment of CYP-treated rats normalized all observed histological, structural, biochemical, and physiological abnormalities. In cystitis 8-AG improved function and reduced both pain and inflammation likely by increasing inosine, a tissue-protective purine metabolite. These findings demonstrate that 8-AG has translational potential for reducing pain and preventing bladder damage in cystitis-associated LUT dysfunctions.


Assuntos
60507 , Cistite , Dor Visceral , Ratos , Animais , Purina-Núcleosídeo Fosforilase , Ratos Sprague-Dawley , Cistite/tratamento farmacológico , Cistite/patologia , Inflamação , Hemorragia/tratamento farmacológico , Inosina
3.
Cancer Cytopathol ; 132(2): 87-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38054349

RESUMO

BACKGROUND: Accurate diagnosis of pancreatic lesions by endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) or fine-needle biopsy can be challenging. Although surrogate immunohistochemical markers for genetic alterations associated with pancreatic ductal adenocarcinoma (PDAC) have been identified, they have modest sensitivity. Biallelic loss of CDKN2A occurs in up to 46% of PDACs, and methylthioadenosine phosphorylase (MTAP) immunohistochemistry (IHC) has been identified as a reliable surrogate marker for this alteration. The current study evaluates the utility of MTAP IHC for the diagnosis of PDAC. METHODS: In total, 136 cases of EUS-FNA cell block or core biopsy targeting solid pancreatic masses were identified. MTAP IHC was performed and evaluated for complete loss of expression in neoplastic cells. These results were correlated with available clinical next-generation sequencing that was performed on a subset of cases. RESULTS: Complete loss of MTAP expression was identified in 23 of 80 (29%) PDACs. A subset of cases classified as suspicious (4 of 21) and atypical (4 of 22) showed MTAP loss. All morphologically indeterminate cases with MTAP loss were confirmed as PDAC on resection/additional sampling. No benign samples (n = 13) showed loss of MTAP. In samples that had available clinical next-generation sequencing data (n = 13), copy number loss of CDKN2A was detected in all cases that had loss of MTAP expression (n = 4). CONCLUSIONS: Loss of MTAP was identified in approximately 30% of PDAC small biopsy specimens. As loss of MTAP expression is not expected in nonneoplastic cells, and these findings suggest that MTAP IHC can support a diagnosis of PDAC in small biopsy samples.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Purina-Núcleosídeo Fosforilase , Humanos , Imuno-Histoquímica , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/métodos
4.
J Biol Chem ; 300(1): 105492, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000655

RESUMO

Homozygous 5'-methylthioadenosine phosphorylase (MTAP) deletions occur in approximately 15% of human cancers. Co-deletion of MTAP and methionine adenosyltransferase 2 alpha (MAT2a) induces a synthetic lethal phenotype involving protein arginine methyltransferase 5 (PRMT5) inhibition. MAT2a inhibitors are now in clinical trials for genotypic MTAP-/- cancers, however the MTAP-/- genotype represents fewer than 2% of human colorectal cancers (CRCs), limiting the utility of MAT2a inhibitors in these and other MTAP+/+ cancers. Methylthio-DADMe-immucillin-A (MTDIA) is a picomolar transition state analog inhibitor of MTAP that renders cells enzymatically MTAP-deficient to induce the MTAP-/- phenotype. Here, we demonstrate that MTDIA and MAT2a inhibitor AG-270 combination therapy mimics synthetic lethality in MTAP+/+ CRC cell lines with similar effects in mouse xenografts and without adverse histology on normal tissues. Combination treatment is synergistic with a 104-fold increase in drug potency for inhibition of CRC cell growth in culture. Combined MTDIA and AG-270 decreases S-adenosyl-L-methionine and increases 5'-methylthioadenosine in cells. The increased intracellular methylthioadenosine:S-adenosyl-L-methionine ratio inhibits PRMT5 activity, leading to cellular arrest and apoptotic cell death by causing MDM4 alternative splicing and p53 activation. Combination MTDIA and AG-270 treatment differs from direct inhibition of PRMT5 by GSK3326595 by avoiding toxicity caused by cell death in the normal gut epithelium induced by the PRMT5 inhibitor. The combination of MTAP and MAT2a inhibitors expands this synthetic lethal approach to include MTAP+/+ cancers, especially the remaining 98% of CRCs without the MTAP-/- genotype.


Assuntos
Desoxiadenosinas , Metionina Adenosiltransferase , Neoplasias , Proteína-Arginina N-Metiltransferases , Purina-Núcleosídeo Fosforilase , S-Adenosilmetionina , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxiadenosinas/antagonistas & inibidores , Desoxiadenosinas/genética , Desoxiadenosinas/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Neoplasias/genética , Neoplasias/fisiopatologia , Neoplasias/terapia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , S-Adenosilmetionina/metabolismo
5.
J Immunol ; 212(1): 143-153, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938074

RESUMO

Recent evidence indicates that specific types of nuclear acids, including guanosine and its derivatives, act as natural ligands for TLR7. This led us to hypothesize that purine nucleoside phosphorylase inhibitors not only can induce apoptosis of T cells but also can lead to TLR7 activation by accumulation of guanine nucleosides, in particular under systemic inflammation, where damaged tissues release a large amount of nucleotides. We demonstrate in the present study that a purine nucleoside phosphorylase inhibitor, forodesine, can reduce the disease severity and prolong the survival in a xenogeneic mouse model of graft-versus-host disease (GVHD). Guanine nucleosides were undetectable in mice during GVHD but increased significantly following forodesine treatment. Our in vitro experiments showed that forodesine enhanced guanosine-mediated cytokine production from APCs, including alveolar macrophages and plasmacytoid dendritic cells, through TLR7 signaling. Forodesine also enhanced Ag-presenting capacity, as demonstrated by increased CD8+ T cell proliferation and higher secretion of IFN-γ and IL-12p40 in an MLR with plasmacytoid dendritic cells. Furthermore, forodesine stimulated IFN-γ production from activated T cells in the presence of a low concentration of guanosine while inhibiting their proliferation and inducing apoptotic cell death. Although forodesine ameliorated GVHD severity, mice treated with forodesine showed significantly higher levels of multiple proinflammatory cytokines and chemokines in plasma, suggesting in vivo upregulation of TLR7 signaling. Our study suggests that forodesine may activate a wide range of immune cells, including T cells, through TLR7 stimulation while inhibiting GVHD by inducing apoptosis of T cells, after allogeneic hematopoietic stem cell transplant.


Assuntos
Doença Enxerto-Hospedeiro , Purina-Núcleosídeo Fosforilase , Animais , Camundongos , Receptor 7 Toll-Like , Guanosina/farmacologia , Inibidores Enzimáticos/farmacologia , Imunidade , Guanina
6.
J Neuropathol Exp Neurol ; 83(2): 107-114, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38109891

RESUMO

According to the 2021 World Health Organization classification of brain tumors, astrocytomas containing a CDKN2A/B homozygous deletion (HD) are designated as grade 4 even when no microvascular proliferation and/or necrosis is present. In this study, we aimed to investigate the relationship between CDKN2A HD and loss of methylthioadenosine phosphorylase (MTAP) expression in adult-type IDH-mutant gliomas and to assess the sensitivity and specificity of MTAP immunohistochemistry (IHC) along with interobserver agreement as a surrogate biomarker for CDKN2A HD. Eighty-eight astrocytomas and 71 oligodendrogliomas cases that were diagnosed between 2014 and 2021 at Hacettepe University were selected and tissue microarrays were conducted to perform CDKN2A fluorescence in situ hybridization and MTAP IHC. Twenty-five (15.7%) cases harbored CDKN2A HD. MTAP loss was detected in 28 (15.7%) cases by the first observer and 27 (17%) cases by the second observer. The sensitivity and specificity of MTAP were calculated as 88% and 95.52%-96.27% for 2 observers. A very good/perfect agreement was noted between the observers (Cohen kappa coefficient = 0.938). Intratumoral heterogeneity was observed in 4 cases. MTAP IHC was found to be a reliable surrogate biomarker as a possible alternative to CDKN2A HD identification with a high sensitivity and specificity along with high interobserver agreement.


Assuntos
Astrocitoma , Glioma , Purina-Núcleosídeo Fosforilase , Adulto , Humanos , Imuno-Histoquímica , Homozigoto , Hibridização in Situ Fluorescente , Reprodutibilidade dos Testes , Deleção de Sequência , Glioma/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Astrocitoma/genética
7.
J Biol Chem ; 300(1): 105586, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141766

RESUMO

About 247 million cases of malaria occurred in 2021 with Plasmodium falciparum accounting for the majority of 619,000 deaths. In the absence of a widely available vaccine, chemotherapy remains crucial to prevent, treat, and contain the disease. The efficacy of several drugs currently used in the clinic is likely to suffer from the emergence of resistant parasites. A global effort to identify lead compounds led to several initiatives such as the Medicine for Malaria Ventures (MMV), a repository of compounds showing promising efficacy in killing the parasite in cell-based assays. Here, we used mass spectrometry coupled with cellular thermal shift assay to identify putative protein targets of MMV000848, a compound with an in vitro EC50 of 0.5 µM against the parasite. Thermal shift assays showed a strong increase of P. falciparum purine nucleoside phosphorylase (PfPNP) melting temperature by up to 15 °C upon incubation with MMV000848. Binding and enzymatic assays returned a KD of 1.52 ± 0.495 µM and an IC50 value of 21.5 ± 2.36 µM. The inhibition is competitive with respect to the substrate, as confirmed by a cocrystal structure of PfPNP bound with MMV000848 at the active site, determined at 1.85 Å resolution. In contrast to transition states inhibitors, MMV000848 specifically inhibits the parasite enzyme but not the human ortholog. An isobologram analysis shows subadditivity with immucillin H and with quinine respectively, suggesting overlapping modes of action between these compounds. These results point to PfPNP as a promising antimalarial target and suggest avenues to improve inhibitor potency.


Assuntos
Antimaláricos , Plasmodium falciparum , Purina-Núcleosídeo Fosforilase , Antimaláricos/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Purina-Núcleosídeo Fosforilase/química , Quinina/química , Espectrometria de Massas , Ligação Proteica
8.
Proc Natl Acad Sci U S A ; 120(52): e2311674120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109528

RESUMO

The tumor microenvironment (TME) is a dynamic pseudoorgan that shapes the development and progression of cancers. It is a complex ecosystem shaped by interactions between tumor and stromal cells. Although the traditional focus has been on the paracrine communication mediated by protein messengers, recent attention has turned to the metabolic secretome in tumors. Metabolic enzymes, together with exchanged substrates and products, have emerged as potential biomarkers and therapeutic targets. However, traditional techniques for profiling secreted metabolites in complex cellular contexts are limited. Surface-enhanced Raman scattering (SERS) has emerged as a promising alternative due to its nontargeted nature and simplicity of operation. Although SERS has demonstrated its potential for detecting metabolites in biological settings, its application in deciphering metabolic interactions within multicellular systems like the TME remains underexplored. In this study, we introduce a SERS-based strategy to investigate the secreted purine metabolites of tumor cells lacking methylthioadenosine phosphorylase (MTAP), a common genetic event associated with poor prognosis in various cancers. Our SERS analysis reveals that MTAP-deficient cancer cells selectively produce methylthioadenosine (MTA), which is taken up and metabolized by fibroblasts. Fibroblasts exposed to MTA exhibit: i) molecular reprogramming compatible with cancer aggressiveness, ii) a significant production of purine derivatives that could be readily recycled by cancer cells, and iii) the capacity to secrete purine derivatives that induce macrophage polarization. Our study supports the potential of SERS for cancer metabolism research and reveals an unprecedented paracrine crosstalk that explains TME reprogramming in MTAP-deleted cancers.


Assuntos
Ecossistema , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Purinas/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Microambiente Tumoral
9.
Biochemistry ; 62(21): 3116-3125, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37812583

RESUMO

Purine nucleoside phosphorylases (PNPs) catalyze the phosphorolysis of 6-oxypurine nucleosides with an HPO42- dianion nucleophile. Nucleosides and phosphate occupy distinct pockets in the PNP active site. Evaluation of the HPO42- site by mutagenesis, cooperative binding studies, and thermodynamic and structural analysis demonstrate that alterations in the HPO42- binding site can render PNP inactive and significantly impact subunit cooperativity and binding to transition-state analogue inhibitors. Cooperative interactions between the cationic transition-state analogue and the anionic HPO42- nucleophile demonstrate the importance of reforming the transition-state ensemble for optimal inhibition with transition-state analogues. Altered phosphate binding in the catalytic site mutants helps to explain one of the known lethal PNP deficiency syndromes in humans.


Assuntos
Purina-Núcleosídeo Fosforilase , Purinas , Humanos , Purina-Núcleosídeo Fosforilase/química , Sítios de Ligação , Domínio Catalítico , Fosfatos/química
10.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833910

RESUMO

Both inosine and guanosine are precursors of uric acid that may cause the diseases of hyperuricemia and gout in humans. Here, a promising bacterial strain for efficiently biodegrading both inosine and guanosine was successfully isolated from a healthy human intestine and identified as Bacillus paranthracis YD01 with 16S rRNA analysis. An initial amount of 49.6 mg·L-1 of inosine or 49.9 mg·L-1 of guanosine was completely removed by YD01 within 12 h, which showed that YD01 had a strong ability to biodegrade inosine and guanosine. Furthermore, the initial amount of 49.2 mg·L-1 of inosine or 49.5 mg·L-1 of guanosine was totally catalyzed by the intracellular crude enzymes of YD01 within 6 h, and the initial inosine amount of 49.6 mg·L-1 or guanosine of 49.7 mg·L-1 was biodegraded by the extracellular crude enzymes of YD01 within 9 h. Illumina Hiseq sequencing and database gene annotation were used to elucidate the genomic characteristics of B. paranthracis YD01. Purine nucleoside phosphorylase, encoded by gene 1785, gene 3933, and gene 4403, was found in the KEEG database, which played a crucial role in the biodegradation of inosine and guanosine. The results of this study provide valuable insights into the mechanisms for biodegrading inosine and guanosine using B. paranthracis YD01.


Assuntos
Guanosina , Inosina , Humanos , Guanosina/metabolismo , RNA Ribossômico 16S/genética , Inosina/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo
11.
Biochemistry ; 62(20): 2928-2933, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37788145

RESUMO

5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase from Helicobacter pylori (HpMTAN) demonstrated faster chemistry when expressed as an isotopically heavy protein, with 2H, 13C, and 15N replacing the bulk of normal isotopes. The inverse heavy enzyme isotope effect has been attributed to improved enzyme-reactant interactions causing more frequent transition-state formation ( Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2109118118). Transition-state analogues stabilize the transient dynamic geometry of the transition state and inform on transition-state dynamics. Here, a slow-onset, tight-binding transition-state analogue of HpMTAN is characterized with heavy and light enzymes. Dissociation constants for the initial encounter complex (Ki) and for the tightly bound complex after slow-onset inhibition (Ki*) with hexylthio-DADMe-Immucillin-A (HTDIA) gave Ki values for light and heavy HpMTAN = 52 ± 10 and 85 ± 13 pM and Ki* values = 5.9 ± 0.3 and 10.0 ± 1.2 pM, respectively. HTDIA dissociates from heavy HpMTAN at 0.063 ± 0.002 min-1, faster than that from light HpMTAN at 0.032 ± 0.004 min-1. These values are consistent with transition-state formation by an improved catalytic site dynamic search and inconsistent with catalytic efficiency proportional to tight binding of the transition state.


Assuntos
Desoxiadenosinas , Tionucleosídeos , Desoxiadenosinas/química , Catálise , Domínio Catalítico , Tionucleosídeos/química , Purina-Núcleosídeo Fosforilase/química
12.
Cancer Cell ; 41(10): 1774-1787.e9, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37774699

RESUMO

Chromosomal region 9p21 containing tumor suppressors CDKN2A/B and methylthioadenosine phosphorylase (MTAP) is one of the most frequent genetic deletions in cancer. 9p21 loss is correlated with reduced tumor-infiltrating lymphocytes (TILs) and resistance to immune checkpoint inhibitor (ICI) therapy. Previously thought to be caused by CDKN2A/B loss, we now show that it is loss of MTAP that leads to poor outcomes on ICI therapy and reduced TIL density. MTAP loss causes accumulation of methylthioadenosine (MTA) both intracellularly and extracellularly and profoundly impairs T cell function via the inhibition of protein arginine methyltransferase 5 (PRMT5) and by adenosine receptor agonism. Administration of MTA-depleting enzymes reverses this immunosuppressive effect, increasing TILs and drastically impairing tumor growth and importantly, synergizes well with ICI therapy. As several studies have shown ICI resistance in 9p21/MTAP null/low patients, we propose that MTA degrading therapeutics may have substantial therapeutic benefit in these patients by enhancing ICI effectiveness.


Assuntos
Neoplasias , Linfócitos T , Humanos , Linfócitos T/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Purina-Núcleosídeo Fosforilase/genética , Imunoterapia , Proteína-Arginina N-Metiltransferases/genética
13.
J Clin Immunol ; 43(8): 2062-2075, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37726596

RESUMO

BACKGROUND: Purine nucleoside phosphorylase (PNP) deficiency is a rare autosomal recessive combined immunodeficiency. The phenotype is profound T cell deficiency with variable B and NK cell functions and results in recurrent and persistent infections that typically begin in the first year of life. Neurologic findings occur in approximately two-thirds of patients. The mechanism of neurologic abnormalities is unclear. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment for PNP deficiency. METHODS: We report here six patients from five unrelated families with PNP deficiency treated in two centers in Turkey. We evaluated the neurological status of patients and compared to post-transplantation period if available. Then, we performed PubMed, Google Scholar, and Researchgate searches using the terms "PNP" and "hematopoietic stem cell transplantation" to find all reported cases of PNP transplantation and compared to our cohort. RESULTS: Six patients were treated in two centers in Turkey. One patient died from post-transplant complications. The other four patients underwent successful HSCT with good immune reconstitution after transplantation (follow-up 21-48 months) and good neurological outcomes. The other patient with a new mutation is still waiting for a matching HLA donor. DISCUSSION: In PNP deficiency, clinical manifestations are variable, and this disease should be considered in the presence of many different clinical findings. Despite the comorbidities that occurred before transplantation, HSCT currently appears to be the only treatment option for this disease. HSCT not only cures immunologic disorders, but probably also improves or at least stabilizes the neurologic status of patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Doenças da Imunodeficiência Primária , Erros Inatos do Metabolismo da Purina-Pirimidina , Humanos , Purina-Núcleosídeo Fosforilase/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/terapia , Doenças da Imunodeficiência Primária/etiologia , Erros Inatos do Metabolismo da Purina-Pirimidina/terapia
14.
World J Microbiol Biotechnol ; 39(10): 286, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606812

RESUMO

2'-deoxyguanosine is a key medicinal intermediate that could be used to synthesize anti-cancer drug and biomarker in type 2 diabetes. In this study, an enzymatic cascade using thymidine phosphorylase from Escherichia coli (EcTP) and purine nucleoside phosphorylase from Brevibacterium acetylicum (BaPNP) in a one-pot whole cell catalysis was proposed for the efficient synthesis of 2'-deoxyguanosine. BaPNP was semi-rationally designed to improve its activity, yielding the best triple variant BaPNP-Mu3 (E57A/T189S/L243I), with a 5.6-fold higher production of 2'-deoxyguanosine than that of wild-type BaPNP (BaPNP-Mu0). Molecular dynamics simulation revealed that the engineering of BaPNP-Mu3 resulted in a larger and more flexible substrate entrance channel, which might contribute to its catalytic efficiency. Furthermore, by coordinating the expression of BaPNP-Mu3 and EcTP, a robust whole cell catalyst W05 was created, capable of producing 14.8 mM 2'-deoxyguanosine (74.0% conversion rate) with a high time-space yield (1.32 g/L/h) and therefore being very competitive for industrial applications.


Assuntos
Bacillaceae , Diabetes Mellitus Tipo 2 , Humanos , Purina-Núcleosídeo Fosforilase/genética , Escherichia coli/genética , Desoxiguanosina
15.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446803

RESUMO

To explore the anti-hyperuricemia components in sunflower (Helianthus annuus L.) calathide extract (SCE), we identified abietic acid (AA) via liquid chromatography-mass spectrometry and found an excellent inhibitor of xanthine oxidase (IC50 = 10.60 µM, Ki = 193.65 nM) without cytotoxicity. Based on the transcriptomics analysis of the human embryonic kidney 293T cell model established using 1 mM uric acid, we evaluated that AA showed opposite modulation of purine metabolism to the UA group and markedly suppressed the intensity of purine nucleoside phosphorylase, ribose phosphate pyrophosphokinase 2, and ribose 5-phosphate isomerase A. Molecular docking also reveals the inhibition of purine nucleoside phosphorylase and ribose phosphate pyrophosphokinase 1. The SCE exhibits similar regulation of these genes, so we conclude that AA was a promising component in SCE against hyperuricemia. This present study provided a novel cell model for screening anti-hyperuricemia natural drugs in vitro and illustrated that AA, a natural diterpenoid, is a potential inhibitor of purine biosynthesis or metabolism.


Assuntos
Helianthus , Hiperuricemia , Humanos , Helianthus/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Simulação de Acoplamento Molecular , Ribose-Fosfato Pirofosfoquinase/metabolismo , Células HEK293 , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Rim/metabolismo , Purinas/metabolismo , Xantina Oxidase
16.
Bioorg Med Chem ; 91: 117411, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451053

RESUMO

In alternate organic synthesis, biocatalysis using enzymes provides a more stereoselective and cost-effective approach. Synthesis of unnatural nucleosides by nucleoside base exchange reactions using nucleoside-metabolizing enzymes has previously shown that the 5-position recognition of pyrimidine bases on nucleoside substrates is loose and can be used to introduce functional molecules into pyrimidine nucleosides. Here we explored the incorporation of purine pseudo bases into nucleosides by the base exchange reaction of pyrimidine nucleoside phosphorylase (PyNP), demonstrating that an imidazole five-membered ring is an essential structure for the reaction. In the case of benzimidazole, the base exchange proceeded to give the deoxyribose form in 96 % yield, and the ribose form in 23 % yield. The reaction also proceeded with 1H-imidazo[4,5-b]phenazine, a benzimidazole analogue with an additional ring, although the yield of nucleoside was only 31 %. Docking simulations between 1H and imidazo[4,5-b]phenazine nucleoside and the active site of PyNP (PDB 1BRW) supported our observation that 1H-imidazo[4,5-b]phenazine can be used as a substrate by PyNP. Thus, the enzymatic substitution reaction using PyNP can be used to incorporate many purine pseudo bases and benzimidazole derivatives with various functional groups into nucleoside structures, which have potential utility as diagnostic or therapeutic agents.


Assuntos
Nucleosídeos , Purinas , Nucleosídeos/química , Benzimidazóis , Nucleosídeos de Purina , Purina-Núcleosídeo Fosforilase/metabolismo
17.
J Clin Immunol ; 43(7): 1623-1639, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37328647

RESUMO

Purine nucleoside phosphorylase deficient severe combined immunodeficiency (PNP SCID) is one of the rare autosomal recessive primary immunodeficiency disease, and the data on epidemiology and outcome are limited. We report the successful management of a child with PNP SCID and present a systematic literature review of published case reports, case series, and cohort studies on PNP SCID listed in PubMed, Web of Science, and Scopus from 1975 until March 2022. Forty-one articles were included from the 2432 articles retrieved and included 100 PNP SCID patients worldwide. Most patients presented with recurrent infections, hypogammaglobulinaemia, autoimmune manifestations, and neurological deficits. There were six reported cases of associated malignancies, mainly lymphomas. Twenty-two patients had undergone allogeneic hematopoietic stem cell transplantation with full donor chimerism seen mainly in those receiving matched sibling donors and/or conditioning chemotherapy before the transplant. This research provides a contemporary, comprehensive overview on clinical manifestations, epidemiology, genotype mutations, and transplant outcome of PNP SCID. These data highlight the importance of screening for PNP SCID in cases presented with recurrent infections, hypogammaglobulinaemia, and neurological deficits.


Assuntos
Agamaglobulinemia , Imunodeficiência Combinada Severa , Criança , Humanos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Purina-Núcleosídeo Fosforilase/genética , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/terapia , Agamaglobulinemia/complicações , Reinfecção/complicações , Mutação
18.
Artigo em Inglês | MEDLINE | ID: mdl-37301365

RESUMO

Methylthio-DADMe-immucillin-A (MTDIA) is an 86 picomolar inhibitor of 5'-methylthioadenosine phosphorylase (MTAP) with potent and specific anti-cancer efficacy. MTAP salvages S-adenosylmethionine (SAM) from 5'-methylthioadenosine (MTA), a toxic metabolite produced during polyamine biosynthesis. Changes in MTAP expression are implicated in cancer growth and development, making MTAP an appealing target for anti-cancer therapeutics. Since SAM is involved in lipid metabolism, we hypothesised that MTDIA alters the lipidomes of MTDIA-treated cells. To identify these effects, we analysed the lipid profiles of MTDIA-treated Saccharomyces cerevisiae using ultra-high resolution accurate mass spectrometry (UHRAMS). MTAP inhibition by MTDIA, and knockout of the Meu1 gene that encodes for MTAP in yeast, caused global lipidomic changes and differential abundance of lipids involved in cell signaling. The phosphoinositide kinase/phosphatase signaling network was specifically impaired upon MTDIA treatment, and was independently validated and further characterised via altered localization of proteins integral to this network. Functional consequences of dysregulated lipid metabolism included a decrease in reactive oxygen species (ROS) levels induced by MTDIA that was contemporaneous with changes in immunological response factors (nitric oxide, tumour necrosis factor-alpha and interleukin-10) in mammalian cells. These results indicate that lipid homeostasis alterations and concomitant downstream effects may be associated with MTDIA mechanistic efficacy.


Assuntos
Fosfatidilinositóis , Purina-Núcleosídeo Fosforilase , Animais , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , S-Adenosilmetionina/metabolismo , Oxirredução , Mamíferos/metabolismo
19.
J Med Chem ; 66(10): 6652-6681, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37134237

RESUMO

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 µM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.


Assuntos
Inibidores Enzimáticos , Purina-Núcleosídeo Fosforilase , Humanos , Purina-Núcleosídeo Fosforilase/metabolismo , Inibidores Enzimáticos/química , Cristalografia
20.
Biochemistry ; 62(11): 1776-1785, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37204861

RESUMO

5'-Methylthioadenosine nucleosidases (MTANs) catalyze the hydrolysis of 5'-substituted adenosines to form adenine and 5-substituted ribose. Escherichia coli MTAN (EcMTAN) and Helicobacter pylori MTAN (HpMTAN) form late and early transition states, respectively. Transition state analogues designed for the late transition state bind with fM to pM affinity to both classes of MTANs. Here, we compare the residence times (off-rates) with the equilibrium dissociation constants for HpMTAN and EcMTAN, using five 5'-substituted DADMe-ImmA transition state analogues. The inhibitors dissociate orders of magnitude slower from EcMTAN than from HpMTAN. For example, the slowest release rate was observed for the EcMTAN-HTDIA complex (t1/2 = 56 h), compared to a release rate of t1/2 = 0.3 h for the same complex with HpMTAN, despite similar structures and catalytic sites for these enzymes. Other inhibitors also reveal disconnects between residence times and equilibrium dissociation constants. Residence time is correlated with pharmacological efficacy; thus, experimental analyses of dissociation rates are useful to guide physiological function of tight-binding inhibitors. Steered molecular dynamics simulations for the dissociation of an inhibitor from both EcMTAN and HpMTAN provide atomic level mechanistic insight for the differences in dissociation kinetics and inhibitor residence times for these enzymes.


Assuntos
Inibidores Enzimáticos , Proteínas de Escherichia coli , Inibidores Enzimáticos/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Purina-Núcleosídeo Fosforilase/química , Desoxiadenosinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...